duminică, 27 martie 2011

The Age of the Universe

Some Universe Wallpapers

The best estimate we currently have for the age of the Universe is 13.7 thousand million years, plus or minus a few hundred million years.



This estimate follows from very accurate observations of the microwaves of the 3K background radiation that reach us from all directions.


Those observations only fit our models of the growth of the Universe if it is now that old. 



More Universe Wallpapers in FullHD

The Horizon Problem

Some Universe Wallpapers

The Universe far beyond our own Milky Way Galaxy looks about the same in all directions. If you are given a picture of some arbitrary small piece of the sky that shows a measurement of your choice (for example, light, or the strength of radio waves, or numbers of galaxies per square degree), then you cannot tell in what direction that piece of sky can be found, except if you already knew that picture and recognized it.


That the Universe looks about the same in all directions is an important observation. Regions of space that are in opposite directions close to the edge of the visible Universe are so far apart that signals from one side have not had nearly enough time yet to reach the other side, so how can those two regions have adjusted their circumstances to one another? This is the so-called Horizon Problem.


The answer to this riddle is (according to modern views) that those two regions are now very far apart, but were so close together just before the Big Bang that pressure waves and heat could move to and fro between them until everything had just about the same temperature and density.


During the Big Bang there was a so-called Inflation Phase and during that phase the Universe increased in size by an incredible factor in a very short amount of time, so that the regions which used to be in close contact were suddenly so far apart that they have had no contact since that time, but yet still look very much alike.


More Universe Wallpapers in FullHD

The Point of Origin of the Expansion

Some Universe Wallpapers

The standard model of the beginning of the Universe does not depend on any preferred or special location in space. In other words, all points in the Universe are equivalent, so there is no particular point that is "the" starting point or center of the Universe.


Our observation that the Universe looks basically the same in all directions (if you take the travel time of light into account) are in agreement with this model.


In this sense, the Universe is similar to the surface of a balloon. If you inflate a balloon, then its surface area increases but there is no particular point on the balloon that is "the" center of the expansion. In fact, the center of the expansion is not on the balloon at all, but rather inside the balloon.


Two-dimensional beings living in the surface of the balloon would be able to deduce that their universe was expanding, even if they can only see along the surface of the balloon, because they would see all other "galaxies" in their universe (dots on the balloon) move away from them, with a speed that increases with distance, just like we see in our Universe.


More Universe Wallpapers in FullHD

No Cosmological Expansion of Galaxies?

Some Universe Wallpapers

Once you have pushed all galaxies in the Universe so they move away from each other, you do not need any special forces to keep their motion away from each other going (following Newton's first law), given that space is nearly empty and doesn't yield much friction.


One answer I've read to the question "why does the Universe keep expanding?" is "because it did so in the past". No currently active special force to stretch everything, including galaxies, is needed. Of course, this does not explain the process that started the expansion in the first place, but does explain how it can keep going.



If a special stretching force does exist (and it may, given that the expansion of the Universe appears to be accelerating), then it could only cause a galaxy to expand if that repulsive force were strengthening all the time (over the same distance), compared to the forces that keep the galaxy together (chiefly gravity).


Otherwise the forces within the galaxy (including the repulsive force) would on average keep the same balance.

More Universe Wallpapers in FullHD

Hubble's Law

Some Universe Wallpapers in FullHD.

The expansion of the Universe is such that the speed v at which a galaxy seems to move away from us is on average proportional to the distance r of that galaxy, according to the formula
(Eq. 1) v = H r
This formula is know as Hubble's Law, and H is Hubble's Constant. The best measurements we have yield a value for H that is about 71 km/s/Mpc.


Our Universe is expanding, but you only notice that at scales much bigger than the scale of a galaxy. Within a galaxy, gravity is strong enough to keep the stars together against the expansion of the Universe.

According to Hubble's Law (see above), the expansion speed over the diameter of a galaxy such as ours (about 100,000 lightyears or 30,000 pc or 0.03 Mpc) is about 2 kilometers per second, which is much smaller than the roughly 200 km/s at which stars orbit around the center of the Galaxy.

In our Galaxy, about as many stars move towards us as move away from us, so about as many stars in our Galaxy have a redshift as have a blueshift.


More Universe Wallpapers in FullHD.

The Expanding Universe

Some Universe Wallpapers

With the Doppler effect you can determine the speed along the line of sight of something that emits light or another kind of electromagnetic radiation. If you know how much light something emits and you can measure how bright it appears from here, then you can calculate how far away that thing must be to look that bright (or dim) with that amount of produced light. By combining those methods, Edwin Hubble could make a graph in 1929 that showed how the Doppler speed of nearby galaxies depended on their distance. The measurements turned out to lie near a straight line, which meant that the further away a galaxy is from us, the faster it moves away from us. This relationship is now called Hubble's Law. Nowadays we can measure distances and speeds of galaxies that are much farther away than the farthest ones Hubble could investigate, and the Law holds also for those very far galaxies.

Different explanations are possible for these observations. One explanation is that all galaxies (or at least the matter from which they formed) was clumped together a long time ago at one place in otherwise empty space, and that an explosion happened which hurled material into all directions at different speeds. The fastest material has traveled furthest, but the slowest material did not get far, so there is a relationship between the speed of the material and its distance from the point of origin. In such a Universe there is a special place, namely the place where the explosion happened. Only observers in such a place see a Hubble's Law, as we do. In such a Universe we'd have to be in just that very place, or else our observations wouldn't fit.

When the true nature of the Sun and planets and things outside of our Solar System were yet unknown, people took it as self-evident that the Earth was in the center of the Universe (in the Geocentric World View). Each new astronomical discovery that made the location of the Earth less important was denied and obstructed, but to no avail. We now know that the Earth is a small planet orbiting an ordinary star somewhere in the outer regions of a normal galaxy at the edge of an unremarkable supercluster. This makes it hard to believe that at the largest scale we would turn out to be in the special center of the Universe after all.
Another argument against such a privileged position is that our cosmic surroundings do not look clearly different from the rest of the Universe. As far as we can tell, the Universe looks just about the same everywhere, with about the same average mass density and the same distribution of matter over the same types of galaxies. If there had been a giant explosion in our location then you might expect to find some traces of that which you couldn't find elsewhere, but there are no such traces.

There is another explanation for Hubble's Law, namely that the Universe itself is expanding. A long time ago all matter was pressed together, not because it was in one place in otherwise empty space, but because the Universe itself was very small then. Because the Universe expands equally fast everywhere, more space appeared between all galaxies so they ended up further apart, just like small spots on a balloon that is being inflated. The nice thing about an expanding Universe is that you automatically get the same Hubble's Law for everybody. From any galaxy in an expanding Universe it looks as if all other galaxies move away from it at a speed that is larger for galaxies that are further away. You can check this for yourself with the balloon with spots that I mentioned before. Pick a spot at random on the balloon and then inflate the balloon. All other spots seem to move away from the chosen one, but the same holds also for any other spot that you pick the next time.

More Universe Wallpapers in FullHD

sâmbătă, 26 martie 2011

The Edge of the Universe

More Universe Wallpapers.

The Universe does not end at the boundary up to which we can see today. If the Universe is x years old, then we cannot know anything about the parts of the Universe that are more than x lightyears away from us, because signals from those parts have not yet had enough time to get to us. It is very well possible (and very likely) that there is far more space beyond the boundary up to which we can see today. That boundary is not a hard edge, and moves away from us at a speed of one lightyear per year (i.e., at the speed of light).

Even a finite Universe need not have a boundary. That means that there does not have to be an edge even if the Universe contains only a limited (but very large) number of liters of space. In the same way, an ant that walks across a balloon finds no edge, though the balloon has only a limited size. So, even in a finite Universe there need not be an edge that is closer in one direction than in another direction.

More of Universe Wallpapers in full HD.

The Universe is Full of Swirling Motion


The Universe is full of rotation: planets, moons, stars, asteroids, clouds of gas, globular clusters, and galaxies orbit around their axis, and things orbit around each other (moons and rings around their planet, planets around their star, stars around the center of their galaxy or globular cluster, galaxies around the center of their galaxy cluster). That is because rotating is a conserved quantity: the total amount of rotation in the whole Universe (measured in a certain way) is constant. So, rotation cannot just disappear, but only if it combines with rotation that is equally great but in the opposite direction.

Rotation can be generated in a medium that did not rotate before, but only with equal amounts of rotation in one direction and in the opposite direction, so that the total is zero as before. If you pull a spoon through a fluid in the middle of a cup or pot, then you'll see that part of the fluid starts rotating, but with equal amounts in both directions.

So, if there is a certain amount of rotation in a large cloud of gas, then that rotation must end up in the star and planets that are formed from the gas. If the rotation is distributed fairly evenly, then all of those things will rotate in about the same direction. For example, the planets all rotate in about the same direction around the Earth, and the Sun rotates in about that same direction around its axis, and most moons orbit in about the same direction around their planet.
 Images are samples from over here. (full hd resolution wallpapers)

Chemical Elements in the Universe

http://hubpages.com/hub/universe_wallpapers

All matter is made up of atoms, of which there are only about one hundred different kinds, and those are called the chemical elements. On earth, most materials are made of different elements. For example, water is made up of water molecules which each contain two hydrogen atoms and one oxygen atom. Living things contain many thousands of different kinds of materials that are each made up of different combinations of chemical elements. About 61 % of the mass of a person is made up of oxygen atoms, about 23 % is carbon, and about 10 % is hydrogen.
The chemical elements that make up the greatest part of the mass of all matter in the Universe is listed in the following table.
Table 1: Chemical Elements in the Universe, by Mass
Name % Mass
H hydrogen 75
He helium 23
O oxygen 1
C carbon 0.5
Ne neon 0.13
Fe iron 0.11
N nitrogen 0.10
Si silicon 0.07
Mg magnesium 0.06
S sulfur 0.05
About 75 % of all matter in the Universe is made up of hydrogen atoms and 23 % of helium atoms. These two together make up 98 % of matter.
The next table shows the most abundant elements, measured by their number rather than by their mass.
Table 2: Chemical Elements in the Universe, by Number
Name % Number
H hydrogen 93
He helium 7.2
O oxygen 0.08
C carbon 0.05
N nitrogen 0.09
Ne neon 0.08
Mg magnesium 0.03
Si silicon 0.03
S sulfur 0.02
Fe iron 0.02
Of all atoms in the Universe, about 93 % is a hydrogen atom. So, hydrogen is by far the most abundant element in the Universe.

Universe Wallpapers